Direct photon-hadron correlation measurement at RHIC

Recent jet-like correlation measurements and a way towards photon-triggered jets at RHIC

> Nihar Ranjan Sahoo (for the STAR collaboration) Texas A&M University

Hot Quarks 2016

Motivation for γ-jet in heavy ion collisions

Direct photon+jet coincidence: a self generated tomographic probe

- Doesn't interact with QCD medium
- Transverse energy approximates that of initial parton p_T in γ-jet events
- Volume emission dominates for γ-trigger events

What physics we are looking for?

An interesting comparison between γ -jet and π^0 -jet

- Recoil parton from direct photon predominantly quarks, whereas that of π^0 are gluons (D. de Florian et al., PRD 91, 014035 (2015), T. Kaufmann et al., PRD 92, 054015 (2015))
- γ-triggered parton (jet) expected to lose less energy than that of π^0 -trigger due to color factor ($C_A/C_F = 9/4$)
- γ -triggers are mainly volume emission, whereas π^0 -triggers are surfaced biased
- on ave. γ -triggered parton (jet) expected to lose less energy than that of π^0 -trigger due to in medium path length difference

- Energy loss as a function of
 - Trigger p_T of direct photon
 - Associated hadron p_T

STAR detector system

- Discrimination between $\pi^0 \rightarrow YY$ and Y_{dir} is key part of this analysis
 - By Transverse Shower Profile (TSP) method
 - Using Barrel Shower Maximum Detector (BSMD)

Transverse shower profile: π^0/Y_{dir} discrimination

$$\mathbf{TSP} = \frac{\mathbf{E_{cluster}}}{\sum_{i} e_{i} r_{i}^{1.5}}$$

 $E_{cluster}$: Cluster energy, e_i : BSMD strip energy, r_i : distance of the strip from the center of the cluster

- a nearly pure sample of π^0 (called " π^0_{rich} ")
- a sample with enhanced fraction of $Y_{\rm dir}$ (called " $Y_{\rm rich}$

Jet-like azimuthal correlation functions

- In γ_{rich} small peak due to some contamination of π^0
- Background subtracted from flow modulated background level determined using Zero Yield At 1 (ZYA1) method
- Near-side yield is by definition zero for true direct-photon trigger

Associated yields of π⁰-hadron correlations

Some discussion of π^0 –hadron correlations

- Away-side yields show suppression
- Near-side shows no suppression
- 85(±3)% fraction of energy carried by π⁰ over "jet energy" (π⁰ + charged hadrons) in pp 200 GeV
- In PYTHIA, it is found to be 80(±5)% which is consistent with data

z_T correction for π⁰-hadron correlations

PLB 760 (2016) 689

- Applying correction factor to z_T (z_T^{corr}) of π^0 triggers in pp
- $D(z_T^{corr})$ is directly compared to the fragmentation function measured via direct-photon triggers

Yields associated with Y_{dir} – trigger: Fragmentation function

$$Y_{\gamma_{dir}+h} = \frac{Y_{\gamma_{rich}+h}^a - RY_{\pi^0+h}^a}{1 - R}$$

 $Y_{\gamma_{rich+h}}^{a(n)}$ and $Y_{\pi^0+h}^{a(n)}$: away-side (near-side) yields of associated particles per $Y_{\rm rich}$ and π^0 trigger, respectively.

Purity of γ^{rich} sample

$$1 - R = \frac{N_{\gamma^{dir}}}{N_{\gamma^{rich}}}$$

(1-R) are ~40% and ~70% for p+p and Au+Au central (0-12%) collisions, respectively

- Fragmentation function is modified
- Away-side yields show suppression in Au+Au collisions as compared with p+p

Nuclear modification factor: I_{AA} of Y_{dir} and π^0

Qin:

G.-Y Qin et al., PRC 80, 054909 (2009)

ZOWW:

X. N. Wang et al., Phys. Rev. C 84, 034902 (2011) Phys. Rev. C 81, 064908 (2010) Phys. Rev. Lett. 103, 032302 (2009)

PLB 760 (2016) 689

Path length and color factor effect: need greater sensitivity to observe

- Within large uncertainties, $I_{AA}^{\pi 0-h}$ and I_{AA}^{Ydir-h} show
 - similar suppression: No clear path length and color factor effect observed
 - strong suppression: particularly for $z_T > 0.2$
- Models show a difference between γ and π^0 trigger but uncertainties in the data are too large to confirm or reject predicted size of effect

Energy loss in azimuthal windows

- High trigger p_T, no recovery of energy loss even at wider azimuthal angle
 [12 < p_Ttrig < 20 GeV/c → 0.1 < z_T < 0.4 → 1.2 < p_Tasso < 8 GeV/c]
- Low trigger p_T, recovery at smaller z_T
 [5< p_T^{trig} < 9 GeV/c → 0.1< z_T < 0.4 → 0.5 < p_T^{asso} < 3.6 GeV/c]

soft particles coming out at wider azimuthal window !!!!

Energy Loss as a function of associated hadron p_T

PLB 760 (2016) 689

- Soft associated particles are less suppressed compared with high p_T
- Energy loss as a function of z_T and associated hadron p_T respond similarly

Energy Loss as a function of triggered direct photon p_T

Energy loss is insensitive to the energy of direct photon trigger at high p_T (8-20 GeV/c)

PLB 760 (2016) 689

Y_{dir} tagged jet measurement in STAR experiment

On-going measurement in STAR

Charged and Full jet reconstruction using STAR TPC and BEMC detector system

Using fastjet jet reconstruction (anti- k_T , k_T algo.)

For wide range of jet radii (0.3 < R < 0.6) since large acceptance in TPC and BEMC

Y_{dir} triggered recoil full jet reconstruction (Pythia)

Preliminary Pythia8 simulation study

- For full Jet reconstruction, nice peak at 15 < p_T^{trig} < 20 GeV/c
- Work is ongoing using STAR data for Au+Au and p+p collisions.....
- Stay tuned for QM2017

Summary and Outlook

- Within uncertainties, no clear path length and color factor effect observed in π^0 vs. γ triggers!
- These effects are not large enough to be observed within our current precision.
- "Modified" FF dependent on p_T^{trig}
- Less suppression or even enhancement at low p_Tassoc
- Soft particles (p_Tassoc < 2 GeV/c) coming out at wider azimuthal angles
- Energy loss is insensitive to the energy of triggered γ at high p_T (8-20 GeV/c) at RHIC

Work is ongoing in STAR experiment to measure both γ - and π^0 -tagged charged/Full jet reconstruction to improve our understanding on parton energy loss at RHIC.

Interesting Direct photon-Jet physics is ongoing at RHIC

Stay tuned.....

Thank you!

Back Up

Nuclear modification factor: I_{AA} of Y_{dir}

- At low z_T, I_{AA} is less suppressed at high p_T^{trig} than at low p_T^{trig}
- At high z_T, similar level suppression in both p_T^{trig} regions
- Redistribution of energy in YaJEM model to differentiate between PHENIX and STAR I_{AA}
- Qin, ZOWW models don't show enhancement at low z_T (for 12-20 GeV/c)